Top

Winch Basics and Not-so-Basics

Todd K., AWDirect Technical Product Support

Coming from a life working in (and owning) collision centers, repair shops, tire shops and now working in the marketing and technical side of the industry, my human hard drive of stories, mistakes, accomplishments and knowledge of the towing industry is reaching critical mass.

I think back to the beginning of my recovery days when it seemed fine to wrap the wire rope around the frame of an overturned casualty, attach the hook back to the wire rope, idle up and jerk the vehicle back to its correct “top-side-up” position. I compare that situation to the knowledge I have now of doing it correctly and safely, all while saving money from having to replace damaged parts. It seems as though it should be easy to teach the new guys not to make the same mistakes I made. WRONG. Now, I do not proclaim to be a psychologist or even know much about the human thought process, but 20+ years in the recovery industry has taught me that most of us have a hard time admitting we have done things wrong or do not know something recovery related.

This leads me to why I am writing this article. When we think of winches and wire rope, we assume they’re super-strong and nearly indestructible. WRONG again. That was the impression I had when I started out in the recovery field. For quite some time, I had the impression that if something broke within the winching system then it had to be a manufacturer’s defect. And…I was WRONG again. Are you seeing a pattern here?

Let’s start with wire rope. First off, we need to think of our wire rope as a running machine with moving parts. How’s that you ask? Think of a 4×4 truck on dry pavement. The truck hops and chirps when you make a really tight turn. This is because the outside wheel is traveling much farther than the inside wheel while being locked together, which wears rubber off of the outside tire. Wire rope behaves the same. When it goes around a sheave or the winch drum, the outside wire strands of the rope rub against the slower-moving inside strands. This wears on the small metal strands of the wire rope the whole time. It’s a sound practice to replace wire rope at least every six months on a regularly used recovery vehicle, even if there are no obvious signs of wear. The wear could be taking place, unseen, inside the rope where the small wire strands have worn on each other, leaving breakage to occur anytime with no warning. A six-month replacement schedule should keep you, your employees, your equipment and your customers safe.

There are a host of other damages and problems one can inflict upon wire rope. These include, but are not limited to: bending, smashing and kinking. For instance, a 3/8″ wire rope should never be run around anything less than a 4″-diameter sheave, or across sharp edges (such as the edge of your carrier bed). Plus, we all know we should never wrap the wire rope and hook around an object and attach the hook back to the wire rope itself. Most of these problems can be avoided by using a synthetic rope, but that is an article all by itself and we will leave that for a future writing.

Now on to the winch. The winch is the heart of your truck. Just like the heart that beats in your chest, you are bound to have problems with it if you neglect it long enough, and probably at the most unfortunate times. You do not have a heart attack at the hospital and your winch will not give out at the shop. So…Lubricate! Lubricate! Lubricate! Lubrication is the lifeblood of your winch. Be sure to change the lubricant at least every season to prolong the internal parts of your winch. The type and weight of lubricant can be found in your winch’s manual. (AHHH! No manual? Manuals for most common name brand winches can be found on the manufacturers’ websites).

Check for leaks at the gear and motor side of your winch. The hydraulic motor mount usually has a weep hole. If there is any fluid dripping from it, replace the seal between the motor and the mount. Check for leaks at any gear case seams and replace the gaskets as necessary. Check for loose bolts in the winch frame and for excessive play in the winch drum from side to side. Last, but certainly not least, check the clutch side of the winch. This usually has a fairly simple design—a handle hooks to a clutch fork that slides the jaw clutch’s two teeth in and out of the two teeth in the side of the drum. This allows the winch to free-spool. The simplicity of this design is also what causes the most problems with user error. That’s right, here is where a lot of us go wrong.

There’s that pattern again. Since I was one of the largest violators of the correct clutch disengagement-engagement procedures, I can explain it well! It is 18 degrees outside. We are picking up a stranded mid-size car in 15″ of snow. We pull up, hit the MICO lock, engage the PTO and idle up. We jump out, pull the clutch release and raise the bed. We shovel the snow from the front of the car, attach our V-strap and proceed up the bed to pull the winch cable out. We find ourselves sliding down the snow and ice on the bed until we stop abruptly at the snow-covered V-strap and attach the hook. Now shivering and slightly shaken from the unintended luge trip down the carrier bed, we check traffic then hurry back to the side of the carrier. We tap the clutch release lever back in and pull on the “winch in” handle until the clutch engages into the spool. WRONG again. Rounded jaw clutch teeth are the single largest repair to winches that I see and are easily the most dangerous condition to have with your winch.

It all stems from the clutch engagement method mentioned before. When we power in to engage the clutch, the pressure and speed of the drum rotation can catch the jaw clutch before it is fully engaged, leaving only a 1/4″ or less of the teeth engaged. This situation causes the teeth to round out if done repeatedly. Once rounded, it may cause the winch to disengage at any time, allowing your casualty to freely roll down the bed and over anything and anyone behind it. The correct procedure for engaging the jaw clutch is to release the clutch lever, then tug on the wire rope until the jaw clutch engages into the drum and stops the free-spooling. Then and only then should power be applied to the winch. I want to stress this: we can prevent damage to our machines and customer vehicles, or even prevent the loss of life by simply using machines the way they were designed to be used—safely and correctly.

Give someone a winch and they will pull stuff around. Teach someone recovery and they will be an asset to our industry and society.